

ASSETS REGISTRY / ANALYSIS TOOL

WATER FOR PEOPLE—RWANDA

- Registered in 2008
- Activities in Rulindo,
 Kicukiro and Gicumbi
 Districts
- Focus on: Water
 Supply, Sanitation
 and Hygiene
 education
- Sanitation includes sanitation in public institution (schools and health care facilities) and household Sanitation through Sanitation marketing approach

DWA OVERALL CONCEPT

Usefulness

The Asset Registry tool is used to identify, catalog and classify all water systems within a district based on their current needs, level of water service provision, and general timeline for eventual repair and/or replacement of significant components.

It helps to flag, prioritize and classify different water systems within a district based on risk and need for repair.

It will help provide a foundation for a long-term plan to maintain, repair, augment, or replace a water system when necessary.

Components of rural water supply system

- **□**Source
- □ Intake structure
- □ Treatment
- □ Pump/if necessary
- □ Conduction line
- **□**Storage tank
- **□** Distribution network
- **□** Hydraulic structures
- □ Public tap/household connections

Definitions of terms used by the tool

- ☐ Assets/Components: Different part composing a water supply system, as highlighted in the previous slide
- □ Design life: Period in which the component will be operating at its maximum capacity, each components have different design life

Reference data: Design Lifetime	Years
Intake	30
Conduction Line	20
Storage tank	30
Other Concrete Structure (sedimentation tank, pleasure break tank, etc.)	20
Distribution Network	30
Pump and Pump Related Electrical Equipment	7
Pump House/Station	20
Treatment Equipment	10
Treatment Housing Structure	10
Kiosk or Public Tap	20

Definitions of terms used by the tool (Ctnd)

□ Remaining	life	period:	Period	remaining	for	the	compone	nts to
be replaced								

□ Risk: Analysis done by the tools based on three areas to evaluation if a component will allow the entire water system to provide water service delivery

Risk Based On Age	Risk Based On Current Condition
No Improved Water Point/System	No Improved Water Point/System
High Risk	High Risk
Low Risk	Low Risk

Structure of tool

Two principal components:

An Android based adaptive survey in the application akvo-FLOW

For data collection through survey questions

A Microsoft-Excel **spreadsheet** that takes raw data obtained in the survey

and analyzes it,

PROCESS

- 1. Baseline
 - Service Levels
 - Service Provider performance and capacity
- 2. District Capacity Assessment

Bill of Quantities Budget

8 9

Sheet0

DEVELOPING THE SURVEY QUESTIONS

	Rwanda Core Asset Analysis Piped Syste	ems (v. 3.1)			
	Question	Response			
	General Information				
	1. Year / Umwaka				
	2. Community Name / Umudugudu				
	3. Water Point/System Unique ID / Nimero y'umuyoboro				
	4. Total Number of Households Living in the Community / Umubare w'ingo ziba				
	5. Total Number Of Households In The Community With Access To An				
	6. Total Number Of Households In The Community Without Access To An				
)	7. Is This An Improved Water Point/System? / Uyo muyoboro uratunganyije?				
		Yes / Yego			
)		No / Oya			
}	Only answer if you responded Yes t	o Q7			
	8. What Type Of Water Point/System Is This? / Uyu muyoboro ni bwoko ki?				
,		Piped Network Gravity Only / Umuyoboro ud	Jakoresha i	ngufu za m	note
;		Piped Network with Pump / Umuyoboro ukores	sha ingufu z	za moteri_	
,		Centralized Rainwater Catchment / Amazi yo	mu bigega a	akusanyirij	we l
}		Kiosk with Piped Supply / Kiosk ifatiye ku muy	oboro		
)		Private Tap with Piped Supply / Robine y'umu	ntu ku giti c	ye ifatiye k	cum
)	Only answer if you responded No to	Q7			
	0 M/L + T = 0(11)				

..\DWA Training tools\Survey questions\Final survey questions\Rwanda 2017 Core Asset Analysis Piped Systems Revised Final Survey questions MININFRA DWA v1.xlsx

CREATING THE SURVEY IN AKVO FLOW

CREATING THE SURVEY IN AKVO FLOW

- Develop questionnaires
- Upload questions on the Dashboard
- Edit or add more questions online
- The dashboard will generate a survey ID which you use to download a survey on the phone

- Install by direct download of the app in the phone
- Start the application and download the surveys using IDs
- Train data collectors

- Once surveys are uploaded on an android phone make sure you buy bundles for internet
- When surveys are filled and complete it will automatically be sent to the Dashboard
- At the Dashboard you can still edit clean or adjust info if needed

After data collection, download the raw data from the dashboard and paste them in the excel tool

- For prioritization, three areas are assessed:
 - Age of Water System Components
 - Overall Functionality/Level of Service Provided by Water System
 - Physical State of Water System Components:

- For prioritization, three areas are assessed:
 - Age of Water System Components

Current year – Year of
construction =
Result compared to the lifetime
period of the component

Overall Functionality/Level of Service Provided by Water System

Assessment through survey questions that measure 8 indicators

Scores	Color	Label
0	Black	No Water Point/System
1	Red	Water Point/System In Poor Condition
2-5	Orange	Water Point/System In Basic Condition
6-7	Yellow	Water Point/System In Intermediate Condition
8	Green	Water Point/System In Good Condition

Level of Service Water Point/System	Points Possible
Water Point/System Is Improved	1
The Source Of The Water Point/System Is Protected	1
Water Point/System Infrastructure Is In Good Physical Condition And Is Functional	1
Number of Users of Water Point/System Meet Standard	1
Water Is Available On The Day Of The Visit	1
Water Point/System Out Of Service For 1 Day Or Less A Month In The Last Year	1
Water Point/System Has Adequate Water Quality (bacteria, turbidity and other contaminates of concern)	1
Water Point/System Has Adequate Water Quantity	1
Total	8

Physical State of Water System Components:

Normal: This means that the current physical state does not impact the functionality of the particular component.

Poor: This means that currently the physical state is such that the functionality of that component is impacted and inhibited

Non-Functional: The component is not functional whatsoever given the significance of the repairs needed, and is likely impacting the overall functioning of the water system itself; full-scale replacement or rehabilitation, or large-scale repair, is needed for component to function again

Copy of Rulindo Asset Analysis Piped Systems 6-16-17.xlsx

Level Of Priority To Replace/Repair The System

COSTING

COSTING

Unit costing example based on historical data

Copy of Rulindo Asset Analysis Piped Systems 6-16-17_KS_071717_InitalCostingMethod (003).xlsx

Thank you!

