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Abstract

Ability for disinfecting sterile biological effluents inoculated with Escherichia coli ATCC 25922 at concentrations of 
105 CFU/mℓ, using a natural mineral aggregate (NMA) and artificial mineral aggregates (AMA’s) consisting of individual 
oxides as Fe2O3, Cu2O y Ag2O and combined oxides as Fe2O3-Cu2O, Fe2O3-Ag2O, Cu2O-Ag2O, Fe2O3-Cu2O-Ag2O, contained 
in alginate beads, was compared. The results indicate that Ag2O and Fe2O3-Ag2O, Cu2O-Ag2O combinations, as well as 
NMA, inactivated 100% of E. coli in 30 min, whereas the oxides mixture, Fe2O3-Cu2O-Ag2O, took  13 min. It was observed 
that redox potential values were closely related to the disinfection level achieved. The advantage resulting from using  
alginate beads was that these allow the formation of AMA, which has higher disinfectant ability relative to NMA.

Keywords: disinfection, biological effluent, Fe2O3, Cu2O and Ag2O, alginate beads, Escherichia coli, natural 
mineral aggregate, artificial mineral aggregate

Introduction

Biological effluents from domestic wastewater treatment are 
required to be disinfected before reuse (Liberti et al., 2000) 
because they still contain microorganisms of intestinal origin, 
such as helminth ova and faecal coliform bacteria. Escherichia 
coli is a bacterium of enteric origin whose occurrence and 
abundance allows for its use in defining the sanitary qual-
ity of water and wastewater. The World Health Organization 
(WHO, 1989) has established a maximum level of 1 000 faecal 
coliforms unit (FCU)/100 mℓ for Category A water quality. 
Chlorination is the most widely used wastewater disinfection 
method, even though it has a drawback due to the formation 
of trihalomethanes and organochlorinated compounds which 
are carcinogens. An alternative disinfection method is the use 
of some metals, either alone or combined, such as Fe, Cu or 
Ag in the solid state (Davies and Etris, 1997; You et al., 2005), 
in ionic form (Craig, 2001; Jiang et al., 2006a; Silva-Martínez 
et al., 2004; Silvestry-Rodriguez et al., 2007), in combination 
with UV light (Kim et al., 2008) or as formulations where 
metal ions of Al, Cu or Ag are added to a solid matrix like 
zeolites (Rivera-Garza et al., 2000; De La Rosa-Gómez et al., 
2008), ceramic material (Kim et al., 2004), silicates (Kawashita 
et al., 2003), colloids and metal nanoparticles (Chaloupka et 
al., 2010; Cho et al., 2005; Choi et al., 2008; Li et al., 2008), 
polymers (Lukhele et al., 2010) or biopolymers (Yi et al., 
2003). However, experiences in using metals for disinfecting 
wastewater have been few, and mainly consist of using metal 
ions in combination with other chemical disinfectants, such as 
chlorine, hydrogen peroxide or peracetic acid (PAA). These 
combinations of disinfectants have been applied to influents 
from advanced primary treatment (APT), biological effluents 
or raw water (Pedahzur et al., 1995; Orta de Velásquez et al., 
2008; Luna-Pabello et al., 2009). In most cases, for achieving 

total inactivation of test microorganisms, contact time tends to 
be large, i.e. up to 2 h (Table 1). 

Mineral aggregates present an opportunity for improve-
ment.  Mineral aggregates may contain metals such as Fe, Cu 
and Ag at their different oxidation states, thus increasing their 
germicidal effect. These metals contribute to inhibition of the 
cellular respiration process, due to the inactivation of –SH radi-
cals of respiration enzymes, the interruption of the electron-
transfer chain and DNA and RNA disruption (Davies and Etris, 
1997; Silva-Martínez et al., 2004; Holt and Bard, 2005; Sharma 
et al., 2005; Yamanaka et al., 2005; Silvestry-Rodriguez et al., 
2007; Park et al., 2009; Chaloupka et al., 2010). Natural mineral 
aggregates (NMAs) have shown germicidal activity but they 
exhibit drawbacks such as not having a homogeneous com-
position and containing undesirable metals such as As and Pb 
(Miranda-Ríos and Luna-Pabello, 2002-2003).

A possible matrix to make artificial mineral aggregates is 
sodium alginate, which is a natural ionic polysaccharide having 
many applications in the food and pharmaceutical industries 
(Braccini and Pérez, 2001). Alginate has been used for immo-
bilising biomolecules and also is a strong chelating agent for 
metals. With most divalent cations, it produces gels that are 
heat irreversible (Park et al., 2007).

Based on the above, the objective of this study was to 
determine the contact time required to disinfect a biological 
effluent containing E. coli, at initial concentrations of 105 CFU/
mℓ, using silver shot, copper shot, natural mineral aggregates 
(NMA’s) and artificial mineral aggregates (AMA’s) formed 
with Fe2O3, Cu2O, Ag2O, separated or combined.

Experimental

Sterile biological effluent: The biological effluent was obtained 
from Ciudad Universitaria UNAM, located at the southern 
zone of Mexico City. Two hundred litres were collected from 
the effluent of the activated sludge system, before it passes 
through the sand filter, and was subjected to physicochemical 
analysis as described by Eaton et al. (2005), and then sterilised 
by autoclaving at 1.1 kg/cm2, 120ºC for 15 min. 
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Table 1
Water and wastewater test disinfection using metals

Disinfectant/ 
Concentration

Test water Test microorganism/ 
Concentration

Contact time/
 Inactivation 

Reference

Zerovalent Fe in granules  
or shot
1.0 g

Artificial 
groundwater   

Bacteriophages:  
1) F X174  
2) MS-2 
1×105 plaque-forming unit/mℓ

 120 min
1) 79.41%,  0.7 log10 
2) 94.94%, 1.3 log10

You et al., 
2005

Zerovalent Ag in granules  
or shot
1.0 g

Sterile biologi-
cal secondary 
effluent

Escherichia coli ATCC 25922, 
7.4×105 CFU/ 100 mℓ

90 min,
100%, 3 log10

Miranda-
Ríos and 
Luna-Pabello, 
2002-2003

K2FeO4
Fe (VI), 
1) 6.0 mg/ℓ
2)  a. 6.0 mg/ℓ     
     b. 15.0 mg/ℓ

1) Sterile phos-
phate buffered 
water
2) Secondary 
sewage effluent

f2 virus
1×105 -1×107 cells/mℓ

1) 1 min, 99% f2 virus
2) a. 13 min, 99% for f2 virus 
    b. 60 min, 99% for bacteria,   
1 min, 100% for f2 virus

Schink and 
Waite, 1980

K2FeO4
Fe (VI)
1) 6.0 mg/ℓ
2) 15.0 mg/ℓ

1) Tap  water 
2) Raw 
wastewater

1) E. coli 3.2×108    CFU/ 100 
mℓ 
2) Faecal coliforms 3.3×108 - 
2×109 FCU/100mℓ

1) 30 min, 100%, 8 log10
2) 80 min,  99.99%, > 4 log10

Jiang et al., 
2006a; b; 
2007 

Electrolytic Cu and Ag ions
1) 1.2 mg/ℓ Cu/ 0.6 mg/ℓ Ag
2) 0.6 mg/ℓ Cu/ 1.2 mg/ℓ Ag
3) 1.2 mg/ℓ Cu/ 0.2 mg/ℓ Ag / 
0.3 mg/ℓ Cl2

1) Biological 
secondary 
effluent 
2) Cooling 
water 

1) Total coliforms and E. coli, 
2.5×108 MPN/100 mℓ
2) Total coliforms, 5.0×108 

MPN/100 mℓ and E. coli, 
2.0×108 MPN/100 mℓ

1) 2.0 h, total elimination of 
coliforms and E. coli 
2) 2.0 h, total elimination of 
coliforms and E. coli 

Silva-
Martínez et 
al., 2004

Cu, Ag ions  and Cl2
1) 0.8 mg/ℓ Cu, 0.08 mg/ℓ Ag
2) 0.8 mg/ℓ Cu/0.08 mg/ℓ 
Ag/1.00 mg/ℓ Cl

Well water Naeglaeria fowleri ATCC 
30894, 
1×104 viable amoebas/ mℓ

1) 72 h, 14.5% (0.58 log10)
2) 3.9 min, 99%

Cassells et 
al., 1995

Ag, Cu
1) 100 +1 000µg/ℓ
2) 500 +5 000µg/ℓ

In vitro Hartmannella vermiformis 
amoebas and the ciliated proto-
zoan Tetrahymena pyriformis 

1)Tetrahymena and 
Hartmannella, 2 log reduction
2) Hartmannella, 0.6 log 
reduction.

Rohr et al., 
2000

Fe(+3) or Cu (+2) in zeolite
(27.5 and 2.0 mg/g)

Municipal sew-
age treatment 
plant

1) Faecal coliforms 1) 2 log reduction in 6 h Milan et al., 
2001

Ag zeolite
(14% w/w) 

Residual efluent
 

106 FCU/100 mℓ 110-129 min,
Category A

De la Rosa-
Gómez et al., 
2008

1) AgNO3 (1.0 mg/ℓ)
2) Ag ions and UV-A   
(54 mW/cm2, 300-400 nm) 
3) Ag ions and visible light 
irradiation
 (93 mW/cm2, 400-700 nm)

Phosphate 
buffer pH=7

E. coli and MS-2 phage 1×105-
2×105 CFU or PFU/mℓ

1) 30 min, 1.5  log E. coli and 
2.5 log MS-2 phage
2) 30 min, 4.5 log E. coli and 5.0 
log MS-2 phage
3) 30 min, 2.0 log E. coli and 4.5 
log MS-2 phage

Kim et al., 
2008

1) Colloidal Ag nanoparticles  
(20 µg/g and 10 µg/g)
2) Colloidal Pt nanoparticles  
(20 µg/g and 10 µg/g)

LB medium 
diluted in NaCl 
(0.85%)

a) Staphylococcus aureus 
b) E. coli

105- 106 CFU/mℓ

1) a. 3.3-4 h total elimination
    b. 2.5 to 3.5 h. total 
elimination 
2) No elimination

Cho et al., 
2005

1) Ag nanoparticles 
2) Silver ions (AgCl)
3) AgCl colloidal
1.4 µM
 2.8 µM
 4.2 µM

BBL broth E. coli PHL628-gfp
(No data)

At 5 hours
1) a. 17.0%
    b.  30.0%
    c.  55.0%
2) a. 11.0%
    b.  69.0%
    c. 100.0%
3) a.   7.0%
    b.  24.0%
    c.  66.0%

Choi et al., 
2008
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Silver nanoparticles  in poly-
meric microspheres,
100 mg

Autoclaved 
water

E. coli ATCC 8739 (7×106 
CFU/mℓ)
P. aeruginosa ATCC 9027 
(22×106 CFU/mℓ)
B. subtilis ATCC 6051 (46×106 
CFU/mℓ)
S. aureus ATCC 25923 (24×106 
CFU/mℓ)

At 2 h
2.64 log
3.87 log
4.06 log
2.65 log

Gangadharan 
et al., 2010

Silver 
(AgNO3 0.01M)
carbon nanotubes polymer-
ised with β cyclodextrin
Carbon nanotubes polymer-
ized with β cyclodextrin
Polyurethane with β 
cyclodextrin

Sterile distilled 
water

E.coli (ATCC25925)
(1.3×107 CFU/mℓ)

30 min, 94%
60 min, 95%
90 min, 100%
30 min, 84%
60 min, 48%
90 min, 45%
30 min, 72%
60 min, 70%
90 min, 48%

Lukhele et 
al., 2010

1) PAA and Ag 
(7.5-1.0 mg/ℓ)
2) H2O2 and Ag
(200-1.0 mg/ℓ)   
3)  H2O2, Cu
(50-1.0 mg/ℓ)

APT effluent 106 FCU/100 mℓ 1) 45 min Category A
2) 30 min Category A
3) 30 min Category A; 120 min 
total elimination 

Orta de 
Velásquez et 
al., 2008

PAA, Cu, Ag
(20.0-0.1-1.0 mg/ℓ)

Biological 
effluent

105 FCU/100 mℓ CF 10 min  Category A Luna-Pabello 
et al., 2009

Colloidal silver
(0.5 mg/ℓ)

Sterilised bio-
logical efluent 

106 CFU/100 mℓ E. coli 15 min total elimination Miranda-
Ríos and 
Luna-Pabello, 
2002-2003

Inoculum: Escherichia coli ATCC 25922 bacteria preserved 
on nutritive agar (BBL) were inoculated in an Erlenmeyer 
flask containing 100.0 mℓ of sterile nutritive broth (BBL) 
and were placed overnight in an incubator with orbital agita-
tion (G24 New Brunswick) at 37ºC and 250.0 r/min. After 
18 h of incubation the inoculum was adjusted with nutritive 
broth at OD of 1.4 at 600 nm wavelength using an UV-VIS 
spectrophotometer (Pharmacia Biotech, ultrospec 3000). 
Subsequently, 10.0 mℓ of inoculum were diluted in 99.0 mℓ 
of sterile distilled water. One millilitre from this decimal 
dilution was pre-adapted in a flask containing 99.0 mℓ of the 
sterile biological effluent. The flask was again placed in the 
incubator with orbital agitation for 24 h.

Escherichia coli presence is the most reliable indicator of 
faecal bacterial contamination of surface waters in different 
countries. An appropriate health-based indicator of microbial 
pathogens should possess several characteristics (Arana et al., 
2000). The indicator should always be present when pathogens 
are present and should not be detected when the pathogens are 
absent; it should have a life span similar to that of the patho-
gens of concern; it should be present in large numbers and 
should be readily detected by simple and inexpensive methods; 
and it should not multiply in the environment once it has been 
shed by the host. Based on these conditions, if the indicator 
is isolated from the water under examination the pathogenic 
organisms could still be present; if the indicator is absent, 
pathogenic organisms are also probably absent (Eaton et al., 
2005; Kim et al., 2008).

Water for testing: Water for testing was prepared by adding  
5.0 mℓ of pre-adapted E. coli at a concentration of 106 CFU/
mℓ for each 95.0 mℓ of sterile biological effluent, to obtain a 
concentration of 105 CFU/mℓ.

Preparation of alginate beads: Sodium alginate solution was 
prepared dissolving 7.5 g of sodium alginate (Sigma), 3 500 
mPa·s and 2.5 g sodium alginate (Sigma), 14 000 mPa·s, in 400 
mℓ of distilled water. This solution was sterilised by autoclav-
ing, was allowed to cool and then powdered Fe2O3, Cu2O (J.T. 
Baker) and Ag2O (Merck) were added to it. The solution was 
homogenised with a magnetic agitator until it was completely 
dissolved. The addition of each oxide was calculated for obtain-
ing the same percentage by weight as that of NMA (see Table 
2). The above mixture was taken by a 3.0 mℓ sterile syringe 
and then was added drop by drop to a 2.0% calcium chloride 
solution (J.T. Baker), thus forming alginate beads which contain 
metals. These beads, which have a diameter of 2.00 mm, are 
filtered off from the CaCl2 solution and are allowed to dry. As a 
blank, alginate beads with no added metals were prepared.

Table 2
Metal oxides content in beads formed 

with sodium alginate
Oxide in the  
alginate beads

Sodium 
alginate (g)

Metals (g)
Fe2O3 Cu2O Ag2O

Fe2O3  97.46 2.5449 - -
Cu2O 99.99 - 0.0116 -
Ag2O 99.99 - - 0.0109
Fe2O3-Cu2O 99.44 2.5449 0.0116  -
Fe2O3-Ag2O 99.44 2.5449 - 0.0109
Cu2O-Ag2O 99.98 - 0.0116 0.0109
Fe2O3-Cu2O-Ag2O 97.43 2.5449 0.0116 0.0109

Microbiological analysis: The concentration of E. coli was 
determined by the dilutions method and by the technique of 
membrane filter using sterile nitrocellulose filters (Millipore, 
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Bedford, MA, USA) with a pore size 
of 0.45 µm and a diameter of 47 mm 
and agar M-FC (BBL) added with 
rosolic acid (Hycel de México, S.A. de 
C.V.) at 2% in NaOH (Merck) (Eaton 
et al., 2005). Petri dishes were placed 
in a water jacketed incubator (Ac-Lab) 
for 24 h at a temperature of 44.5°C.

Physicochemical characterisation of 
NMA: A natural mineral aggregate 
(NMA) with a particle size ranging 
between 2.0 to 3.36 nm, was obtained 
from a mine located in Zacatecas State, 
Mexico. This material was characterised by X-ray diffraction 
techniques and inductively-coupled plasma atomic emission 
spectroscopy (ICP-OES) (Eaton et al., 2005).

Disinfection tests: To evaluate disinfecting capacity of NMA 
and alginate beads containing separate oxides, 4 tests were 
carried out:
•	 NMA
•	 Alginate beads containing separate oxides
•	 Oxide pairs: Fe2O3-Cu2O, Fe2O3-Ag2O and Cu2O-Ag2O
•	 Triple combination Fe2O3-Cu2O-Ag2O

From each flask, 100.0 mℓ of water for testing was taken, and 
for each test either 1 g of NMA or 1 g of alginate beads was 
added, as shown in Table 3. Flasks were placed in an incubator 
with orbital agitation, at 37°C and 250 r/min. At pre-established 
contact times of 0.0, 30.0 and 60.0 min or 0, 15.0 and 30.0 min, 
the concentration of surviving bacteria was determined, as well 
as pH, dissolved O2 and redox potential. The disinfectant activ-
ity of alginate beads containing metal oxides and NMA was 
stopped by adding a neutralising solution prepared with 280.0 
mℓ of Tween 80 (Sigma), 40.0 g of soy lecithin and 1.25 mℓ of 
phosphate buffer solution, making the volume up to 1 ℓ with 
distilled water. Once homogenised, the solution was sterilised by 
autoclaving at 1.1 kg/cm2, 120ºC for 15 min (Bloomfield, 1991). 
This neutralising solution was used either applying 1.0 mℓ on the 
membrane, where direct seeding is carried out, or in amounts of 
9.0 mℓ applied into the assay tubes used for preparing the 10-1 

decimal dilution, for seeding by diluting. The experiments were 
conducted in triplicate and the results presented are mean values. 
The results were analysed statistically using SPSS 15.0 software. 
Statistical analysis consisting of a factorial analysis of variance 
(ANOVA) was performed on the entire data set to determine if 
significant differences existed between the results obtained using 
different types of disinfectant (NMA or AMA) and contact time. 
The differences between treatments were analysed by Tukey ś 
HSD (Honestly Significantly Different) test at P<0.05. 

Kinetics of disinfection – The kinetics of disinfection was 
established according to the Hom equation (Gyürék and Finch, 
1998). In this model, the concentration of disinfectant remains 
unchanged during the disinfection process.

														              (i)
where: 

t = time (minutes)
Nt/N0 = quantity of surviving microorganisms, 
k*  =Constant, time -1, this constant includes the die-off 
coefficient and the disinfectant doses Cn (when  n=1) and m 
without change. 

Results and discussion

The results of microbiological and physicochemical charac-
terisation of the effluent of the activated sludge system before 
it was sterilised, are shown in Table 4. The data indicate that it 
corresponds to a typical secondary effluent (Metcalf and Eddy, 
2004; Orta de Velásquez et al., 2008; Luna-Pabello et al., 2009). 

The results of physicochemical characterisation of NMA 
by the x-ray diffraction technique indicate that is comprised 
of quartz, sanidine, nymite, montmorillonite, calcite and Fe 
oxide (III). ICP-OES analysis indicated that NMA contains Fe 
(1.78 % w/w) in a higher proportion than other metals, such as 
Cu (0.0103% w/w), Zn (0.0743% w/w), As (0.0037 %w/w), Ag 
(0.0101% w/w) and Pb (0.0448% w/w). Despite the concentra-
tions of As and Pb being detected in low proportions, it is desir-
able that they would not be present in a disinfected effluent.

X-ray analysis of the bulk flotation product indicated that 
pyrite (FeS2) is the main form of Fe and indicated the pres-
ence of calcite (CaCO3) in the NMA. The calcite in the NMA 
would neutralise any H2SO4 that might form from a possible 
pyrite oxidation, freeing carbonate anions. Also, as a result of 

Table 3
Experimental conditions for disinfection test

Test Disinfectant  (1 g) Contact time (min)
NMA NMA  0,15,30,60
Metal Alginate beads containing Fe2O3,

Alginate beads containing Cu2O
Alginate beads containing Ag2O

0,15,30,60

Metal pairs Alginate beads containing Fe2O3 and Cu2O
Alginate beads containing Fe2O3 and Ag2O
Alginate beads containing Cu2O and Ag2O

0,15,30

Combination 
of 3 metals 

Alginate beads containing Fe2O3, Cu2O and Ag2O 0,5,10,15 and 0,15,30

Table 4
Microbiological and physicochemical 

characteristics of the biological effluent 
before it was subjected to sterilisation

Parámeter Parámeter
pH (25°C) 7.7 Arsenic (mg/ℓ) 0.0007
BOD5 (mg/ℓ) 32 Cadmium (mg/ℓ) <0.005

COD (mg/ℓ) 99 Cyanides (mg/ℓ) <0.02
TDS (mg/ℓ) 18 Copper (mg/ℓ) 0.01
SS (mℓ/ℓ) <0.1 Chromium (mg/ℓ) <0.02
Nitrates 
(mg/ℓ)

1.86 Mercury (mg/ℓ) 0.0015

Nitrites (mg/ℓ) 0.097 Nickel (mg/ℓ) <0.025
Kjeldahl 
Nitrogen 
(mg/ℓ)

22.85 Silver (mg/ℓ) <0.01

Total nitrogen 
(mg/ℓ)

24.807 Lead (mg/ℓ) <0.025

Total phos-
phorus (mg/ℓ)

4.14 Zinc (mg/ℓ) <0.01

Oil and 
greases (mg/ℓ)

<5

Faecal coli-
forms (FCU/
mℓ)

8.6x103 Helminth ova 
(HE/ℓ)

4-5 

)exp(/ *
0

m
t tkNN 
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prevalent acidity conditions, soluble Pb and As species would 
form their carbonates and would adsorb onto cemented layers 
or precipitate on the calcite, and thus reduce the aqueous avail-
ability of these metals (Armienta and González Hernández, 
2007; Smedley, 2008; Romero et al., 2008; Espinosa et al., 
2009).

In the NMA experiments, redox potential in test water was 
oxidant (132.6±0.85 mV). Since the pH values were around 
8.5 ±0.03 units, As and Pb could not be incorporated into the 
final effluent.. After 30 min of contact between test water and 
NMA, Fe, Cu, As, Ag and Pb concentrations were lower than 
the detection limit in the test water, and Zn had a concentration 
of 0.58 mg/ℓ.

The tests  conducted with NMA indicated that almost 
100% of 105 CFU/mℓ E. coli may be removed during 30 min 
of contact (Fig. 1), whereas with copper shot and silver shot 90 
min are needed (Miranda-Ríos and Luna-Pabello, 2002-2003). 
NMA requires from 15 to 30 min to obtain an effluent that 
would be considered by WHO as Category A, that is, suitable 
to for reuse in agricultural irrigation (less than 1 000 FCU/100 
mℓ), while a zeolite containing silver at a concentration of 1.4% 
w/w needs 110 min to achieve the same disinfection level (De 
La Rosa-Gómez et al., 2008). Consequently, the combination 
of metals in NMA exerts a synergistic effect on disinfection 
because it requires 80 min less than silver zeolite and 60 min 
less than either copper shot or silver shot to achieve the same 
results. A Tukey HSD test (P<0.05) showed statistically sig-
nificant differences between the disinfection %  at 15 min of  
contact time achieved with use of  NMA (99.679%) and AMA 
with Ag  (i.e. Ag2O (99.990%),  Fe2O3-Ag2O (99.997%), Cu2O-
Ag2O (99.999%) and Fe2O3-Cu2O-Ag2O (100.000%) alginate 
beads)  versus  AMA without Ag (i.e. Fe2O3 (76.010%), Cu2O  
(79.940%)  and  Fe2O3-Cu2O (49.820%) alginate beads). 

In Fig. 2 and Fig. 3 it can be seen that both alginate beads 
containing Ag2O and those formed with Fe2O3-Ag2O or Cu2O-
Ag2O combinations require less than 30 min contact time to 
achieve the total removal of bacteria. In a similar time period, 
beads with Fe2O3 and those containing Cu2O reduce the initial 
content of E. coli by less than 1 base-10 logarithmic unit (log10). 
Moreover, after a contact time of 15 min, beads with Fe2O3-
Cu2O combination reduce the content of E. coli only by 0.32 
log10, whereas with beads containing Fe2O3-Ag2O o Cu2O-Ag2O 
the concentration decreases 0.48 and 0.17 log10 units, respec-
tively. Finally, for the beads containing Ag2O, the concentration 
was reduced to 1.33 log10 units, resulting in a survival of more 
than 1 log10.

The value corresponding to a Category A effluent is 
achieved at a contact time from 15 to 30 min for Ag2O beads 
and from 10 to 15 min for Fe2O3-Ag2O and Cu2O-Ag2O beads. 
As shown in Figs. 2 and 3, the effect produced by the union 
between Ag2O and Fe2O3 or Cu2O is an increase in the disin-
fecting capacity of silver oxide, requiring a shorter contact 
time to remove the E. coli added, due to the synergistic effect 
of these oxides on each other. Similar observations for an 
increase in disinfecting capacity were reported for the union 
of electrolytically-produced Cu and Ag ions (Rohr et al., 2000; 
Silva-Martínez et al., 2004) or Cu and Ag oxides contained in a 
ceramic matrix (Kim et al., 2004), for water from cooling tow-
ers; however, a synergistic effect on disinfection due to Fe2O3 
and Ag2O has not been reported.

Figure 4 shows that alginate beads containing the 3 oxides, 
Fe2O3, Cu2O and Ag2O, require a contact time of 13 min to 
completely remove E. coli, and from 5 to 10 min to reach the 
values established by WHO for a Category A effluent. The 
increase in removal of E. coli is again attributed to the syner-
gism of the 3 metals. As  observed in Fig. 3, the disinfecting 
capacity of the Fe2O3-Cu2O combination is minimal; therefore 
the increase in the disinfecting capacity with the combination 
of the 3 oxides is not only attributable to the metals involved, 
but to the presence of oxygen in the medium. In this sense, an 
increase in bacterial inactivation has been demonstrated by the 
production of oxygen-reactive species by silver (Davies and 
Etris, 1997), both in the matrix containing it (Inoue et al., 2002) 
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Inactivation of E. coli by alginate beads containing 

metal oxide pairs

Figure 1
 Inactivation of E. coli using NMA

Figure 2
Inactivation of E. coli by alginate beads containing 

separated metal oxides 
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or by intracellular production as a consequence of the damage 
that silver causes by forming insoluble complexes with DNA 
and cellular RNA (Park et al., 2009). This causes the interrup-
tion of growth, metabolism and reproduction in the affected 
cell, as well as changes in structure and permeability of the cell 
membrane, disturbing the interchange of material between cell 
and its environment. Silver causes the cytoplasmic membrane 
to shrink and to separate from the cell wall (Feng et al., 2000).

An increase in the bacterial inactivation effect produced 
by disinfectants generating reactive oxygen species like H2O2 
and PAA, and Cu and Ag in their ionic states, was observed for 
APT and biological treatment effluents (Orta de Velásquez et 
al., 2008; Luna-Pabello et al., 2009). In these experiments, the 
time required to obtain Category A effluents was 30 min for 
H2O2-Cu (50.0-1.0 mg/ℓ), H2O2-Ag (200.0-1.0 mg/ℓ) or PAA-Ag 
(7.5-1.0 mg/ℓ) combinations and was reduced by 10 min for 
Cu-Ag-PAA (0.1-1.0 -20.0 mg/ℓ) combination. That is, these 
contact times were higher than those required for the combi-
nation of the 3 metallic oxides. This supports the theory that 
oxygen contained in the oxides of the 3 metals used plays an 
active role in disinfection.

In Fig. 5, an increase in disinfection by using the combina-
tion of the 3 metals is observed, where a contact time lower 
than 5 min. was needed for removing 105 CFU/mℓ E. coli, 
while NMA requires 30 min (Fig. 1). Consequently, combina-
tion of the 3 metals is a good option in disinfection of effluents 
from biological treatment systems, without the presence of 
undesirable metals such as Pb and As (Miranda-Ríos and Luna-
Pabello, 2002-2003). 

NMA required a contact time of 30 min (Fig. 1) and AMA 
required 13 min (Fig. 4). The E. coli inactivation kinetics 
followed the Hom equation using either the NMA or the Fe2O3-
Cu2O-Ag2O AMA and the corresponding equations were: Nt/
N0= exp(-0.1555×t1.3327) and Nt/N0= exp(-0.669×t 1.204), respec-
tively. In both cases, it was observed that the inactivation rate 
increases with the contact time due to the fact that m is greater 
than 1.0. The rate constant is more than 2 times greater for the 
AMA than for the NMA, according to its greater disinfectant 
power.

Also, the NMA rate constant is very close to that measured 
for the Cu-Ag PAA (k*=-0.1612) (Luna-Pabello et al., 2009). In 
both cases, the silver concentration was 1.0 mg/ℓ and the initial 
bacteria concentration was 105 CFU/100 mℓ.

In the case of the use of chloramine, at a concentration level 
of 2.4 mg/ℓ, to disinfect a biological effluent, a rate constant 
of -0.361 was measured, which is close to that found for the 
Fe2O3-Cu2O-Ag2O beads. However, the m exponent for chlo-
ramine disinfection (m=0.715) is lower than 1.0 (Pretorius and 
Pretorius, 1999); that is, the rate decreases with the contact 
time, which implies that chloramine is in fact consumed during 
the disinfection. This is in contrast to disinfection with Fe2O3-
Cu2O-Ag2O beads, for which no metal consumption has been 
observed.

Moreover, for all tests performed, the pH was maintained 
at about 8.5, whereas in the case of dissolved oxygen there was 
a slight tendency to decrease from 5.6 to 5.1 mg/ℓ O2. With 
regard to redox potential, the value increased by 18.0 mV in 
assays where Ag2O y Fe2O3-Ag2O was used; by 20 mV for  
Cu2O-Ag2O beads; by 34 mV for Fe2O3-Cu2O-Ag2O beads; and 
by 24 mV for NMA. This increase in redox potential, where the 
environment becomes more oxidising, can be related to E. coli 
removal, as a greater increase produces a smaller contact time 
to inactivate the bacteria. For flasks containing alginate beads 
comprising Cu2O, Fe3O2 and Fe2O3-Cu2O combination, redox 
potential was maintained about 8 mV. These beads showed very 
low disinfecting capacity (less than 1 base-10 logarithmic unit).

In Mexico, wastewater is a valuable (and sometimes the 
only) resource available for crop irrigation, but is frequently 
reused in agriculture without any proper application of dis-
infection measures. This inevitably poses a grave risk to 
health. Therefore, the importance of this type of study lies in 
the priority it attaches to treating the high levels of microbial 
contamination which exist in wastewater, when said waste
water is destined for reuse in agriculture (Orta de Velásquez et 
al., 2008).

Chlorination is the wastewater disinfection method more 
widely used, even though it might lead to the formation of 
trihalomethanes and organochlorinated compounds which are 
carcinogens. The main alternatives to chlorination are ozona-
tion, and the use of ultraviolet light. According to estimates 
carried out by Collivignarelli et al. (2000), the investment cost 
for the disinfection of wastewater previously treated by  
a biological system varies, depending on the size of the plant, 
as follows (in South African Rands): Chlorine dioxide = 
ZAR138 427 to 1 993 343; ozone = ZAR346 067 to 5 613 198; 
ultraviolet light = ZAR263 010 to 7 336 609. Another possible 
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technical alternative for the disinfection of raw or partially 
treated wastewater is the use of metals such as silver (Ag) and 
copper (Cu). However, there is little information available on 
this subject.

It should be noted that as the wastewater moves forward 
in the treatment train its faecal coliform content as well as its 
nutritional content diminishes. For this reason, if the adequate 
disinfection of wastewater at the early stages of the treatment 
is achieved using low concentrations of metals, it would be 
possible to preserve the nutrients and this would represent an 
advantage when used in agricultural irrigation, while avoiding 
the creation of carcinogenic compounds associated with the 
addition of chlorine (Keraita et al., 2008; Luna-Pabello et al., 
2009). Before widespread application can be recommended, 
however, economic feasibility studies need to be conducted. 
Nevertheless, the alternative remains potentially interesting for 
developing countries.

    
Conclusions

In the case of NMA, for alginate beads containing Ag2O 
and combinations of Fe2O3-Ag2O and Cu2O-Ag2O, 30 min 
of contact time were required for inactivating 100% of E. 
coli at a concentration of 105 CFU/mℓ. For beads contain-
ing the Fe2O3-Cu2O-Ag2O mixture 13 min were required. 
In order to attain Category A water quality, a contact time 
of 15 to 30 min was required for NMA and Ag2O beads, 
whereas 10 to 15 min was required for Fe2O3-Ag2O y Cu2O-
Ag2O beads. It was observed that redox potential values are 
closely related to the disinfection level achieved. The need 
to use less time to achieve the desired disinfection level is 
closely related to the synergistic effect of the metals present. 
The observed sequence of decreasing bacterial inactivation 
effect was as follows: Fe2O3-Cu2O-Ag2O>Fe2O3-Ag2O=Cu2O-
Ag2O>Ag2O=NMA>Fe2O3=Cu2O=Fe2O3-Cu2O. The advantage 
of using alginate beads is that it allows the formation of AMA, 
which has a greater disinfecting capacity than NMA.
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